Na+-H+ exchange and Na+ entry across the apical membrane of Necturus gallbladder
نویسندگان
چکیده
The role of Na+-H+ exchange in Na+ transport across the apical membrane was evaluated in Necturus gallbladder epithelium by means of intracellular Na+ activity (aNai) and 22Na+ uptake measurements. Under control conditions, complete replacement of Na+ in the mucosal solution with tetramethylammonium reduced aNai from 14.0 to 6.9 mM in 2 min (P less than 0.001). Mucosal addition of the Na+-H+ exchange inhibitor amiloride (10(-3) M) reduced aNai from 15.0 to 13.3 mM (P less than 0.001), whereas bumetanide (10(-5) and 10(-4) M) had no effect. Na+ influx across the apical membrane was studied by treating the tissues with ouabain, bathing them in Na-free solutions, and suddenly replacing the mucosal solution with an Na-containing solution. When the mucosal solution was replaced with Na-Ringer's, aNai increased at approximately 11 mM/min. This increase was inhibited by 54% by amiloride (10(-3) M, P less than 0.001) and was unaffected by bumetanide (10(-5) M). Amiloride-inhibitable Na+ fluxes across the apical membrane were also induced by the imposition of pH gradients. Na+ influx was also examined in tissues that had not been treated with ouabain. Under control conditions, 22Na+ influx from the mucosal solution into the epithelium was linear over the first 60 s and was inhibited by 40% by amiloride (10(-3) M, P less than 0.001) and by 19% by bumetanide (10(-5) M, P less than 0.025). We conclude that Na+-H+ exchange is a major pathway for Na+ entry in Necturus gallbladder, which accounts for at least half of apical Na+ influx both under transporting conditions and during exposure to ouabain. Bumetanide-inhibitable Na+ entry mechanisms may account for only a smaller fraction of Na+ influx under transporting conditions, and cannot explain influx in ouabain-treated tissues. These results support the hypothesis that NaCl entry results primarily from the operation of parallel Na+-H+ and Cl--HCO-3 exchangers, and not from a bumetanide-inhibitable NaCl cotransporter.
منابع مشابه
Na+-H+ exchange at the apical membrane of Necturus gallbladder. Extracellular and intracellular pH studies
The mechanism of luminal solution acidification was studied in Necturus gallbladder by measurement of mucosal solution and intracellular pH with glass electrodes. When the gallbladder was bathed by a Na-Ringer's solution it acidified the luminal side by a Na+-dependent, amiloride-inhibitable process. In the presence of ouabain, acidification was reduced but could be stimulated to a rate greater...
متن کاملCyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium
The effects of elevating intracellular cAMP levels on Na+ transport across the apical membrane of Necturus gallbladder epithelium were studied by intracellular and extracellular microelectrode techniques. Intracellular cAMP was raised by serosal addition of the phosphodiesterase inhibitor theophylline (3 mM) or mucosal addition of either 8-Br-cAMP (1 mM) or the adenylate cyclase activator forsk...
متن کاملCl-/HCO3- exchange at the apical membrane of Necturus gallbladder
The hypothesis of Cl-/HCO3- exchange across the apical membrane of the epithelial cells of Necturus gallbladder was tested by means of measurements of extracellular pH (pHo), intracellular pH (pHi), and Cl- activity (alpha Cli) with ion-sensitive microelectrodes. Luminal pH changes were measured after stopping mucosal superfusion with a solution of low buffering power. Under control conditions,...
متن کاملMembrane of Necturus Gallbladder
The hypothesis of Cl-/HCO s exchange across the apical membrane of the epithelial cells of Necturus gallbladder was tested by means of measurements of extracellular pH (pH.), intracellular pH (pHi), andClactivity (aCli) with ion-sensitive microelectrodes. Luminal pH changes were measured after stopping mucosal superfusion with a solution of low buffering power. Under control conditions, the lum...
متن کاملApical membrane Na+/H+ exchange in Necturus gallbladder epithelium. Its dependence on extracellular and intracellular pH and on external Na+ concentration
Intracellular microelectrode techniques and extracellular pH measurements were used to study the dependence of apical Na+/H+ exchange on mucosal and intracellular pH and on mucosal solution Na+ concentration ([Na+]o). When mucosal solution pH (pHo) was decreased in gallbladders bathed in Na(+)-containing solutions, aNai fell. The effect of pHo is consistent with titration of a single site with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 83 شماره
صفحات -
تاریخ انتشار 1984